Preparation and Performance of a Silica-Supported V₂O₅ on TiO₂ Catalyst for the Selective Reduction of NO with NH₃ E. T. C. Vogt*, A. Boot,* A. J. van Dillen,* J. W. Geus,* F. J. J. G. Janssen,† AND F. M. G. van den Kerkhof† *Department of Inorganic Chemistry, University of Utrecht, Croesestraat 77a, 3522 AD Utrecht, The Netherlands, and †Arnhem Institutions of the Dutch Electricity Utilities N.V., KEMA, R&D Division, Department of Chemical Research, P.O. Box 9035, 6800 ET Arnhem, The Netherlands Received April 22, 1987; revised July 20, 1988 A preparation technique is described in which a layer of TiO_2 completely covering the support can be deposited onto silica. Onto the support thus modified, V_2O_5 can be applied to result in a catalyst suitable for the selective catalytic reduction (SCR) of NO_x with NH_3 . To obtain the required selectivity in the reduction of NO_x the silica surface must be completely covered with TiO_2 . Catalysts prepared according to the above procedure exhibit good activity and a completely selective reduction of NO to N_2 at temperatures to 350°C. At higher temperatures selective oxidation of the NH_3 to N_2 is observed. © 1988 Academic Press, Inc. #### INTRODUCTION One of the options for postcombustion control of NO_x emission is the selective catalytic reduction of NO_x (SCR) (1). In contrast to all other reducing agents, such as H_2 , CO, and CH_4 , only ammonia has been found to be selective in the reduction of NO_x in gas flows containing an excess of oxygen. From the catalyst systems investigated for SCR (2-6), WO₃ on TiO₂ (5) and especially V₂O₅ on TiO₂ (6) have proved to be promising. Also, the V₂O₅ on SiO₂ catalyst we have developed (7, 8) exhibits an attractive activity in SCR, although its high selectivity decreases somewhat at temperatures above 300°C. Most procedures to prepare V₂O₅ on TiO₂ start from TiO₂ as the support onto which pentavalent vanadium oxide is deposited by impregnation or adsorption. Impregnation agents like ammonium metavanadate (9, 10) and vanadium or vanadyl chlorides (11, 12) have been described. Using the adsorption method (13), vanadyl acetylacetonate (14, 15) and vanadyl triisobutoxide have been reported (16). Opinion about the use of bulk TiO₂ as a support is not unequivocally favorable. Commercial TiO₂ is expensive, difficult to process to mechanically strong bodies, and has a relatively low specific surface area. Since multimolecular adsorption of a precursor of the active component generally does not occur, an adsorption procedure usually leads to a low loading. Impregnation, especially at higher loadings, results mainly in inhomogeneous distribution of the active component, which exhibits a broad particle size distribution. To avoid these deficiencies, some investigators have proposed the application of silica as a support for the active components. Shikada et al. (17) and Odenbrand et al. (18) thus prepared silica-based catalysts by first producing a SiO₂-TiO₂ coprecipitate by homogeneously raising the pH of an acidified solution of Na₂SiO₃ and TiCl₄ by means of hydrolysis of urea. Shikada et al. (19) also proposed a procedure in which a silica support was consecutively impregnated with a solution of titanic sulfate and a solution of vanadium oxide in oxalic acid. However, both procedures suffer from the disadvantages of coprecipitation and impregnation. The porous structure is difficult 314 VOGT ET AL. to control with coprecipitation, and the distribution of the active components is not homogeneous with impregnation. To produce better titania-vanadia catalysts for the SCR we therefore developed a preparation technique, based on the deposition-precipitation procedure described by van Dillen et al. (20) and Geus (21). In this procedure a cheap support of a high, thermostable surface area and good mechanical properties with a titania surface is prepared by the application of TiO₂ onto silica. In a previous paper the preparation of a vanadia on silica catalyst was described (7). In that paper it was shown that vanadium(III) ions dissolved in water are much more basic than vanadium(V) ions. As a result the V(III) ions exhibit a stronger interaction with the Brønsted acid sites of the silica surface. The V₂O₃ deposited onto the silica was subsequently oxidized to V_2O_5 . The thus obtained V_2O_5 on SiO_2 catalyst showed a high activity in the selective reduction of NO with NH₃ in the presence of oxygen. In the present work attention is focused on the improvement of this V_2O_5 on silica catalyst by introduction of a layer of titanium oxide between the silica support and the vanadium oxide moieties. Addition of a uniform interlayer of titania was achieved by the subsequent precipitation of hydrated titanium(III) and vanadium(III) oxides onto silica. Both deposition—precipitations were performed from a homogeneous solution of titanium(III) and vanadium(III), respectively. After drying and calcination, the loaded carrier was characterized with temperature-programmed reduction (TPR), BET surface area measurement (N₂, 77 K), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and high-temperature X-ray diffraction (HTXRD). The interaction of the different oxidic phases in the catalyst was assessed by measurement of the kinetic parameters in the oxidation of carbon monoxide. The catalytic performance of the V₂O₅/TiO₂ on SiO₂ catalyst was measured in the SCR of NO with NH₃. Selectivity data were obtained using labeled molecules such as ¹⁵NO and ¹⁵NH₃. #### **EXPERIMENTAL** # Preparation of Catalysts An aqueous solution of NH₄VO₃ was electrochemically reduced according to the procedure described before (7). A suitable amount of this solution was added to an acidified suspension (pH about 0.5) of the support material, Degussa Aerosil 200V (BET surface area 187 m² g⁻¹). The suspension was present in a precipitation vessel equipped with baffles to ensure a good homogeneity of the suspension during agitation. To the suspension, an appropriate amount of a solution of TiCl₃ (Merck, 15% TiCl₃ in HCl) was added. The pH of the suspension was raised homogeneously by the slow injection of a NaOH solution (injection rate 0.1 mmol OH⁻ min⁻¹) into the vigorously agitated solution. At a pH of about 8, injection was stopped. The catalytic properties, to be dealt with later, will show that this preparation procedure leads to the deposition of the hydrated titanium(III) oxide first, and subsequently to the decomposition of the hydrated vanadium(III) oxide. The precipitate was collected, washed thoroughly with deionized water, and subsequently dried at 120°C in air for 24 h. The dried product was finally calcined at 350°C in air for at least 24 h. Four samples of various compositions of vanadium and titanium were prepared using this procedure. The vanadium content of the samples was between 5 and 10 wt%. The titania loading was varied to provide a range of coverages of the surface of the silica support. One catalyst was prepared with a TiO₂ loading far above that required for monolayer coverage, a second catalyst was prepared with a TiO₂ loading just sufficient to cover the silica surface with a monolayer, and a third sample was prepared with a TiO₂ loading far below the amount corresponding to a monolayer. Monolayer coverage is defined here as complete coverage of the silica surface with a layer of TiO_2 with a thickness of 0.38 nm, the largest cell axis for rutile. The catalytic properties of the V_2O_5 on SiO_2 catalyst without TiO_2 described before (7) was also tested. A V_2O_5 on TiO_2 catalyst prepared by the so-called monolayer adsorption of vanadyl acetylacetonate (6) was used as a reference. ## Characterization The elemental composition of the catalyst samples was established using atomic absorption spectrometry (AAS). Samples were destroyed following the procedure described in our previous paper (22). The V₂O₅ content was also determined with TPR, yielding composition in agreement with the AAS results. BET surface areas were measured on a Carlo Erba Sorptomatic 1800. XRD spectra of the samples were recorded in order to establish the particle size distribution and to assess the titania modification (anatase or rutile). A hightemperature Guinier camera was used at temperatures 800°C in order to investigate phase transitions. The use of DRIFT on a Perkin-Elmer 1800 FTIR in order to establish the surface coverage was described previously (22). Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were performed with a Philips EM 420 microscope. The sample preparation techniques have been described elsewhere (22). The kinetic parameters of the catalysts in the oxidation of carbon monoxide were used to establish whether the active component is supported by either TiO₂ or SiO₂. The activation energies of supported vanadium oxide depend on the supporting material (22). The activity for the CO oxidation was tested in a fully automated microreactor setup described previously (22). Approximately 500 mg of catalyst was used in these experiments. CO and O₂ partial pressures were 1 kPa, balanced with helium. Space velocities were typically of the order of $3000 h^{-1}$. ## NO Reduction Activity ¹⁵NH₃ and ¹⁵NO were obtained from MSD Isotopes (Canada) and were used without further purification. Gas mixtures of these labeled compounds with helium to 10 MPa with concentrations of 2000–3000 ppm were prepared by conventional static gravimetric methods. Gas mixtures of 2000 ppm ¹⁴NH₃ in helium, 2000 ppm ¹⁴NO in helium, and 25% O₂ in helium were purchased from Air Products (Belgium) and were used without further purification. A steady-state plug-flow reactor, described in detail elsewhere (4), was used to determine the activity of the catalysts. All experiments were carried out with about 50 mg catalyst, particle size 0.25-0.50 mm, with a total flow of 100 cm³ min⁻¹ of a gas mixture of 500 ppm of NO, 500 ppm of NH₃, and 2 vol% O₂. Helium was used as balance, and the space velocity was 60,000 h^{−1}. The reactor was coupled via an adjustable leak valve to a sector mass spectrometer. Another apparatus was used to study the influence of SO₂ on the reduction reaction over the catalyst C (see Table 1 for nomenclature). This was done in a conventional fixed bed reactor (space velocity 70,000 h⁻¹). A vertical quartz tube (inner diameter 4.4 mm) containing about 400 mg catalyst was heated to 400°C. The flow through the reactor was 1 liter (STP) min⁻¹. The gases were heated before mixing to 200°C in order to avoid the formation of ammonium sulfate and ammonium hydrogen sulfate. Mixing of the gases was established with the aid of mass flow controllers. The inlet and outlet gas compositions were measured using a quadrupole mass spectrometer. ## RESULTS #### Characterization Some of the characteristics of the samples are presented in Table 1. XRD mea- 316 VOGT ET AL. TABLE 1 Characteristics of the Catalyst Samples | Sample | V ₂ O ₅
AAS
(wt%) | TiO ₂ AAS (wt%) | V ₂ O ₅
TPR
(a.u.) | BET
surface area
(m ² g ⁻¹) | | | |------------------------|---|----------------------------|--|--|--|--| | A1 (SiO ₂) | 0 | 0 | 0 | 187 | | | | A2 (TiO_2/SiO_2) | 0 | 33 | 0 | 197 | | | | В | 4.5 | 24 | 42 | 240 | | | | C | 6 | 33 | 52 | 235 | | | | D | 9.5 | 6 | 95 | 141 | | | | E | 44 | 0 | _ | 80 | | | | \mathbf{F}^a | 3.6 | 96.4 | 17 | 45 | | | ^a Prepared by monolayer adsorption of vanadyl acetylacetonate onto TiO₂ (68% anatase, 32% rutile). surements performed on samples B and D show that at titania loadings at or below the theoretical monolayer coverage no crystalline phases appear after calcining at 350°C. Upon heating of samples B and D, low-intensity peaks of anatase are found to appear above temperatures of about 650°C. Neither rutile lines nor V₂O₅ lines were found in the XRD patterns upon heating to 800°C. The sample C, containing 33 wt% TiO₂, shows different behavior. Already at the starting temperature the most intense anatase line at d = 3.52 Å can be observed, albeit very weak, and very broad. When heating the sample, the complete anatase pattern emerges at about 615°C. At about 690°C, lines belonging to rutile are found. The drop in intensity in the anatase pattern, and the simultaneous rise in the rutile pattern indicate a phase transition of the anatase into the rutile modification. Again, however, no V₂O₅ lines are observed in the temperature range 20 to 800°C. In the DRIFT spectra of samples B and C no peak was observed at $3750~\rm cm^{-1}$ (the band at this wavenumber is assigned to the O-H stretching vibration of silica), indicating a complete coverage of the silica surface. This observation was supported by the TEM images. From the micrographs shown in Fig. 1, it is obvious that the TiO_2 and V_2O_5 are well spread over the support. Furthermore, at higher Ti loadings (samples B and C), no $\nu_{\text{O-H}}$ of silica was observed. Table 2 lists the kinetic parameters for the CO oxidation reaction for the samples used in this study. These results will be used to establish whether or not the silica surface is completely covered by titania. # NOx Reduction The results of the activity measurements of the catalysts of Table 1 are shown in Figs. 2 and 3. Catalyst C (Fig. 2) shows a very high activity and a very high selectivity at 400°C with respect to nitrogen formation. The behavior of catalyst D (Fig. 3) differs from that of catalyst C. The ratios of the amounts of V₂O₅ and TiO₂ in catalysts B and C are equal but the total amount of V₂O₅ and TiO₂ in catalyst C is less. Nevertheless, the catalysts B and C show the same conversion profiles. Comparing Figs. 2 and 3, it can be concluded that the selectivity remains constant up to 300°C, although the conversion of NO over catalyst D is about one-half of the conversion over catalyst (B and C) at 300°C. The activity presented in Fig. 3 resembles that found for catalyst E, which was dealt with in a previous paper (7). The behavior of catalyst D in the SCR is comparable with that of the V_2O_5 on SiO_2 catalyst. Above 300°C the selectivity of the reaction changes over catalyst D and ammonia is oxidized into N_2 , NO, and N_2O . In Table 3 the TABLE 2 Kinetic Parameters for CO Oxidation | Catalyst | E_{a} (kJ mol ⁻¹) | $k_0 \ (s^{-1} m^{-2} V_2 O_5)$ | | | |----------|--|---------------------------------|--|--| | В | 71 ± 2 | 2×10^3 | | | | C | 73 ± 2 | 4×10^3 | | | | D | 86 ± 2 | 3×10^{3} | | | | E | 92 ± 4 | 3×10^3 | | | | F | 71 ± 2 | 5×10^3 | | | Note. 300° C < T < 500° C, 1% CO and 1% O₂ in He, space velocity $3000 \ h^{-1}$. Fig. 1. Transmission electron micrograph of catalyst C, after oxidation at 350°C. Magnification $120,000\times$. The grayish background particles are the support material, SiO₂; the smaller dots are the oxidic material deposits. No distinction can be made between V_2O_5 and TiO_2 particles. Some larger scaly aggregates can be observed and are supposed to be TiO_2 . catalysts are compared according to their selectivities. It can be seen that by increasing the amount of titania in the catalyst, the selectivity of the ammonia oxidation changes to nitrogen formation at 400°C. The numbers 1-5 in Table 3 refer to the FIG. 2. The activity of catalyst C in the reaction of NO, NH₃, and O₂. The catalyst was previously calcined in air at 350°C. Initial concentrations: $[NO]_i = [NH_3]_i = 500$ ppm, $[O_2]_i = 2\%$, balance helium. Space velocity: 60,000 h⁻¹. FIG. 3. The activity of catalyst D in the reaction of NO, NH₃, and O₂. The catalyst was previously calcined in air at 350°C. Initial concentrations: [NO]_i = [NH₃]_i = 500 ppm, $[O_2]_i = 2\%$, balance helium. Space velocity: 60,000 h⁻¹. 318 VOGT ET AL. TABLE 3 Relative Occurrence of ¹⁴N Atoms of NH₃ in the Reaction Products of the Five Reactions Mentioned in the Text, Using ¹⁵NO and ¹⁴NH₃ in the Presence of Oxygen | Catalyst
(w/w, %)
V ₂ O ₅ /TiO ₂ /SiO ₂ | Temp.
(°C) | NO
reduction | | NH ₃
oxidation | | | |---|---------------|---------------------|-----------------------|------------------------------|-----------------------|---------------------| | | | 1
N ₂ | 2
N ₂ O | 3
NO | 4
N ₂ O | 5
N ₂ | | E | 400 | 0.35 | 0.31 | 0.14 | 0.05 | 0.15 | | 44/—/56 | 300 | 1.00 | 0 | 0 | 0 | 0 | | D | 400 | 0.31 | 0.02 | 0.21 | 0.04 | 0.37 | | 9.5/5/85.5 | 300 | 0.95 | 0 | 0 | 0 | 0.05 | | B,C | 400 | 0.72 | 0.01 | 0 | 0.01 | 0.26 | | 6/33/61 | 300 | 0.97 | 0 | 0 | 0 | 0.03 | | F
3.6/96.4/— | 400 | 0.81 | 0.09 | 0 | 0 | 0.10 | Note. The relative occurrence is defined as the ratio of the concentration of ^{14}N atoms from ammonia in one of the products to the sum of the ^{14}N atoms in the products. The relative occurrence of reaction 5, for instance, thus becomes $2[^{14}N_2]/[^{14}N^{15}N] + [^{14}N^{15}NO] + [^{14}NO] + 2[^{14}N_2]$. When a mixture of $^{15}NH_3$ and ^{14}NO was used (catalyst E) the relative occurrence of ^{15}N from ammonia is presented. overall reactions 4 NO + 4 NH₃ + O₂ $$\rightarrow$$ 4 N₂ + 6 H₂O (1) 4 NO + 4 NH₃ + 3 O₂ \rightarrow 4 N₂O + 6 H₂O (2) 4 NH₃ + 5 O₂ \rightarrow 4 NO + 6 H₂O (3) $$2 NH_3 + 2 O_2 \rightarrow N_2O + 3 H_2O$$ (4) $$4 \text{ NH}_3 + 3 \text{ O}_2 \rightarrow 2 \text{ N}_2 + 6 \text{ H}_2\text{O}$$ (5) The reactions were established by the use of the reaction mixtures NO, $^{15}NH_3$, and O_2 and ^{15}NO , NH₃, and O_2 for the catalysts V_2O_5 on SiO₂ and V_2O_5/TiO_2 on SiO₂, respectively. The catalysts in Table 3 can be divided into two groups with respect to their conversion of NO into N_2 . In contrast with the results obtained with catalysts C and F, catalysts D and E produce large amounts of the oxidation products of ammonia. The activity and selectivity of these catalysts appear to rise with increasing amounts of TiO_2 in the catalyst. The values found for catalyst B, not explicitly mentioned, closely resemble those found for catalyst C. Finally, the catalytic performance of catalyst C remains constant in the presence of NO, NH₃, O₂, and SO₂ for up to 170 h. #### DISCUSSION The behavior of catalysts B and C in the high-temperature XRD experiments appears to be in reasonable agreement with results reported by other authors. Bond et al. (23) reported on a phase transition of TiO_2 (anatase) in the presence of V_2O_5 to rutile. Other reports (24-26) mention a loss of oxygen in V₂O₅ mixed with TiO₂ (anatase). Both procedures appear to be activated by the remarkable fit of the crystal lattices of V_2O_5 and TiO_2 (25). Reportedly, the oxygen loss of V₂O₅ results in the transition of the anatase to rutile at temperatures of about 650°C, thus stabilizing a number of oxygen vacancies in the vanadium oxide. The range of V₂O₅/anatase weight ratios optimal for the transition is described to be 0.15 to 0.25 (24), which happens to resemble the ratio in our catalysts. The stabilization of oxygen defects may greatly enhance the oxidation activity. The formation of the rutile can be observed only in the sample with the highest TiO₂ loading. In the samples with monolayer coverage of TiO₂ or less, rutile either cannot be observed or is truly absent, which could be caused by the small layer thickness preventing formation of the rutile lattice. The anatase crystallization observed at higher temperatures is probably caused by dehydration of the surface TiOH species. In Fig. 4, a number of possible arrangements of the components of the various ca- FIG. 4. Possible arrangements of the materials constituting the catalysts after preparation. The figure schematically presents: I, a layer of TiO_2 covering silica; II, V_2O_5 particles on this TiO_2 layer; III, V_2O_5 particles partially supported on TiO_2 and partially on SiO_2 . talysis are presented. During the first step of the deposition precipitation a monolayer of the TiO₂ precursor is formed (species I). In the resulting catalyst (sample A2 of Table 1) this layer shows no catalytic activity in the reaction of NO, NH₃, and O₂. The silica surface is completely covered at TiO₂ loadings above 23 wt%. In the presence of both trivalent titanium and vanadium species, texture II or III may be formed at high and low TiO₂ loadings, respectively. From the absence of V_2O_5 in the XRD pattern and the electron micrographs we conclude that the vanadium oxide is homogeneously dispersed on both TiO_2 and SiO_2 . The configurations II and III in Fig. 4 can therefore be assigned to catalysts C and D, respectively. Support for this suggestion is found in the kinetic parameters of the CO oxidation (Table 2), in the selectivity data calculated from the SCR experiments (Table 3), and in the DRIFT data. In previous work (22) we concluded that the kinetic parameters in the oxidation of CO on various V₂O₅-based catalysts are strongly dependent on the support used. The apparent activation energy found for Al_2O_3 - and TiO_2 -supported V_2O_5 was 71–73 kJ mol⁻¹. A silica-supported V₂O₅ catalyst prepared by our deposition technique exhibited an activation energy of 90-94 kJ mol⁻¹, whereas for unsupported, well-annealed V₂O₅ an activation energy of 110-120 kJ mol⁻¹ was measured. We concluded therefore that the activation energy in the CO oxidation is a good analytical device for the identification of interactions between the active species and the support. The values presented in Table 2 thus indicate that in samples B and C, having high TiO₂ loadings, the vanadium oxide is supported on a layer of TiO₂ covering the silica surface. Sample D shows an activation energy which is intermediate between those found for titania- and silica-supported vanadium oxide. From the CO oxidation results of this and the previous work (22) we conclude that in this case the vanadium is supported partially on bare silica and partially on the less abundant TiO₂. Diagnostic results from the SCR experiments were obtained when the reaction was carried out at 400°C. Catalysts D and E, showing a high activation energy in the oxidation of CO, exhibit poor catalytic performance (Table 3). The close resemblance of the selectivities of samples D and E again indicates that in the case of D, which is loaded with an amount of TiO₂ insufficient for complete surface coverage, the V₂O₅ is supported on bare silica. The very good selectivities and activities of the samples in which complete coverage of the SiO₂ with TiO₂ has been established are in perfect agreement with the results from CO oxidation measurements. We thus conclude that, in the case of catalysts B and C, arrangement II from Fig. 4 is present. With sample D, arrangement III has been established. The presence of situation I can be definitively ruled out, since TiO₂ alone (A2) does not show SCR activity. It is therefore obvious that the TiO₂ precipitates completely before the onset of V₂O₅ precipitation. ## CONCLUSIONS - 1. It is feasible to replace the bulk of the TiO_2 in V_2O_5/TiO_2 catalysts by silica using our preparation technique, thereby obtaining a relatively cheap catalyst which is highly active and selective within a large operating window, and, moreover, is resistant to SO_2 . - 2. The catalyst, however, performs excellently only if the surface of the silica is completely covered by TiO₂, which calls for TiO₂ loadings of about 20–25 wt%, since the V(III) precursor will preferably interact with free silica surface if present, as is indicated by the results of the CO oxidation measurements. A last remark should be made to stress the importance of the values reported for the operation of catalysts B and C at higher temperatures. Although a slight decrease in NO reduction activity is evident, the side reaction producing molecular nitrogen (5) dominates over the other NH₃ oxidation reactions with this catalysts. This implies that using this catalyst, operation at an excess concentration of NH_3 may become possible. The excess ammonia present after the SCR reaction could then be quantitatively converted to N_2 in a subsequent part of the reactor. Consequently the difficult process of instantaneous monitoring of the reactant concentration and the rapid response necessary upon concentration changes would become far easier. #### **ACKNOWLEDGMENT** The authors are grateful to Professor J. R. H. Ross and his group for providing the reference V_2O_5 on TiO_2 monolayer catalyst. #### REFERENCES - Siddiqi, A. A., and Tenini, J. W., Hydrocarbon Process. 60, 115 (1984). - Yoshida, H., Takahashi, K., Sekiya, Y., Morikawa, S., and Kurita, S., "Proceedings, 8th International Congress on Catalysis, Berlin, 1984," Vol. III, p. 649. Verlag Chemie, Weinheim, 1984. - Yaverbaum, L. H., "Nitrogen Oxides Control and Removal: Recent Developments." Noyes Data Corp., Park Ridge, NJ, 1979. - Janssen, F. J. J. G., and van den Kerkhof, F. M. G., Kema Sci. Tech. Rep. 3, 71 (1985). - Morikawa, T., Takahashi, K., Mogi, J., and Kurita, S., Bull. Chem. Soc. Japan 55, 2254 (1982). - Bosch, H., Janssen, F. J. J. G., van den Kerkhof, F. M. G., Oldenziel, J., van Ommen, J. G., and Ross, J. R. H., Appl. Catal. 25, 239 (1986). - Barten, H., Janssen, F., van den Kerkhof, F., Leferink, R., Vogt, E. T. C., van Dillen, A. J., and Geus, J. W., "Proceedings, IVth Intern. Symp. on Preparation of Heterogeneous Catalysts Louvainla-Neuve, 1986" (G. Poncelet, P. Grange, and P. A. Jacobs, Eds.), Studies in Surface Science and Catalysis Series, Vol. 31, p. 103. Elsevier, Amsterdam, 1987. - Dutch Patent Appl. 8503090; European Patent Appl. 862019676; U.S. Patent Appl. 930117; Japan Patent Appl. 61-268480. - Horvath, B., Geyer, J., and Krauss, H. L., Z. Anorg. Allg. Chem. 426, 141 (1976). - Miyamoto, A., Yamazaki, Y., Inomata, M., and Murakami, Y., J. Phys. Chem. 85, 2366 (1981). - Chien, J. W., J. Amer. Chem. Soc. 93, 4675 (1971). - Bond, G. C., and Brückmann, K., Faraday Discuss. Chem. Soc. 72, 235 (1981). - Roozeboom, F., Fransen, T., Mars, P., and Gellings, P., Z. Anorg. Allg. Chem. 449, 25 (1979). - van Hengstum, A. J., van Ommen, J. G., Bosch, H., and Gellings, P., Appl. Catal. 5, 207 (1983). - van Ommen, J. G., Hoving, K., Bosch, H., van Hengstum, A. J., and Gellings, P. J., Z. Phys. Chem. N.F. 134, 99, (1983). - Kyenski, J., Baiker, A., Glinski, M., Dollenmeier, P., and Wokaun, A., J. Catal. 101, 1 (1986). - Shikada, T., Fujimoto, K., Kunugi, T., Tominaga, H., Kaneko, S., and Kubo, Y., Ind. Eng. Chem. Prod. Res. Dev. 20, 91 (1981). - Odenbrand, C. U. J., Lundin, S. T., and Anderson, L. A. H., Appl. Catal. 18, 335 (1985). - Shikada, T., Fujimoto, K., Kunugi, T., and Tominaga, H., J. Chem. Tech. Biotechnol. A 33, 446 (1983). - Van Dillen, A. J., Geus, J. W., Hermans, L. A. M., and van der Meijden, J., in "Proceedings, 6th International Congress on Catalysis, London, 1976" (G. C. Bond, P. B. Wells, and F. C. Tompkins, Eds.), Vol. 2, p. 677. The Chemical Society, London, 1977. - 21. Geus, J. W., in "Proceedings, III Intern. Symp. on Scientific Bases for the Preparation of Heterogeneous Catalysts, Louvain-la-Neuve, 1982" (G. Poncelet, P. Grange, and P. A. Jacobs, Eds.), Studies in Surface Science and Catalysis Series, Vol. 16, p. 1. Elsevier, Amsterdam, 1983. - Vogt, E. T. C., de Boer, M., van Dillen, A. J., and Geus, J. W., Appl. Catal. 40, 255 (1988). - Bond, G. C., Sárkány, A. J., and Parfitt, G. D., J. Catal. 57, 476 (1979). - Cole, D. J., Cullis, C. F., and Hucknall, D. J., J. Chem. Soc. 72, 2185 (1976). - Vejux, A., and Courtine, P. J., Solid State Chem. 93 (1978); 63, 179 (1986). - Saleh, R. Y., Wachs, I. E., Chan, S. S., and Chersich, C. C., J. Catal. 98, 102 (1986).